Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Dent J ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614878

RESUMO

OBJECTIVES: The purpose of this work was to optimise printable polycaprolactone (PCL)/ß-tricalcium phosphate (ß-TCP) biomaterials with high percentages of ß-TCP endowed with balanced mechanical characteristics to resemble human cancellous bone, presumably improving osteogenesis. METHODS: PCL/ß-TCP scaffolds were obtained from customised filaments for fused deposition modelling (FDM) 3D printing with increasing amounts of ß-TCP. Samples mechanical features, surface topography and wettability were evaluated as well as cytocompatibility assays, cell adhesion and differentiation. RESULTS: The parameters of the newly fabricated materila were optimal for PCL/ß-TCP scaffold fabrication. Composite surfaces showed higher hydrophilicity compared with the controls, and their surface roughness sharply was higher, possibly due to the presence of ß-TCP. The Young's modulus of the composites was significantly higher than that of pristine PCL, indicating that the intrinsic strength of ß-TCP is beneficial for enhancing the elastic modulus of the composite biomaterials. All novel composite biomaterials supported greater cellular growth and stronger osteoblastic differentiation compared with the PCL control. CONCLUSIONS: This project highlights the possibility to fabricat, through an FDM solvent-free approach, PCL/ß-TCP scaffolds of up to 70 % concentrations of ß-TCP. overcoming the current lmit of 60 % stated in the literature. The combination of 3D printing and customised biomaterials allowed production of highly personalised scaffolds with optimal mechanical and biological features resembling the natural structure and the composition of bone. This underlines the promise of such structures for innovative approaches for bone and periodontal regeneration.

2.
J Funct Biomater ; 15(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38248688

RESUMO

This in vitro study assessed the efficacy of a solution containing 33% trichloroacetic acid (CCl3COOH; TCA) and hydrogen peroxide (H2O2) in decontaminating machined (MAC) and sand-blasted acid-etched (SBAE) titanium surfaces. A total of 80 titanium disks were prepared (40 MAC and 40 SBAE). Streptococcus sanguinis and Enterococcus faecalis strains were incubated on 36 samples, while the remaining 44 were kept as controls. Roughness analysis and scanning electron microscopy were used to evaluate the surface features before and after TCAH2O2 treatment. The viability of human adipose-derived mesenchymal stem cells (ASCs) after TCAH2O2 decontamination was assessed with a chemiluminescent assay along with cell morphology through fluorescent staining. TCAH2O2 preserved the surface topography of MAC and SBAE specimens. It also effectively eradicated bacteria on both types of specimens without altering the surface roughness (p > 0.05). Also, no significant differences in protein adsorption between the pristine and TCAH2O2-treated surfaces were found (p = 0.71 and p = 0.94). While ASC proliferation remained unchanged on MAC surfaces, a decrease was observed on the decontaminated SBAE specimens at 24 and 48 h (p < 0.05), with no difference at 72 h (p > 0.05). Cell morphology showed no significant changes after 72 h on both surface types even after decontamination. This study suggests TCAH2O2 as a promising decontamination agent for titanium surfaces, with potential implications for peri-implant health and treatment outcomes.

3.
Polymers (Basel) ; 15(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37571080

RESUMO

The mechanical and biological behaviors of PMMA/Al2O3 composites incorporating 30 wt.%, 40 wt.%, and 50 wt.% of Al2O3 were thoroughly characterized as regards to their possible application in implant-supported prostheses. The Al2O3 particles accounted for an increase in the flexural modulus of PMMA. The highest value was recorded for the composite containing 40 wt.% Al2O3 (4.50 GPa), which was about 18% higher than that of its unfilled counterpart (3.86 GPa). The Al2O3 particles caused a decrease in the flexural strength of the composites, due to the presence of filler aggregates and voids, though it was still satisfactory for the intended application. The roughness (Ra) and water contact angle had the same trend, ranging from 1.94 µm and 77.2° for unfilled PMMA to 2.45 µm and 105.8° for the composite containing the highest alumina loading, respectively, hence influencing both the protein adsorption and cell adhesion. No cytotoxic effects were found, confirming that all the specimens are biocompatible and capable of sustaining cell growth and proliferation, without remarkable differences at 24 and 48 h. Finally, Al2O3 was able to cause strong cell responses (cell orientation), thus guiding the tissue formation in contact with the composite itself and not enhancing its osteoconductive properties, supporting the PMMA composite's usage in the envisaged application.

4.
Polymers (Basel) ; 15(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36987192

RESUMO

In this work, the combination of biochar produced through a pyrolytic process of hemp hurd with commercial humic acid as a potential biomass-based flame-retardant system for ethylene vinyl acetate copolymer is thoroughly investigated. To this aim, ethylene vinyl acetate composites containing hemp-derived biochar at two different concentrations (i.e., 20 and 40 wt.%) and 10 wt.% of humic acid were prepared. The presence of increasing biochar loadings in ethylene vinyl acetate accounted for an increasing thermal and thermo-oxidative stability of the copolymer; conversely, the acidic character of humic acid anticipated the degradation of the copolymer matrix, even in the presence of the biochar. Further, as assessed by forced-combustion tests, the incorporation of humic acid only in ethylene vinyl acetate slightly decreased both peaks of heat release rate (pkHRR) and total heat release (THR, by 16% and 5%, respectively), with no effect on the burning time. At variance, for the composites containing biochar, a strong decrease in pkHRR and THR values was observed, approaching -69 and -29%, respectively, in the presence of the highest filler loading, notwithstanding, for this latter, a significant increase in the burning time (by about 50 s). Finally, the presence of humic acid significantly lowered the Young's modulus, unlike biochar, for which the stiffness remarkably increased from 57 MPa (unfilled ethylene vinyl acetate) to 155 Mpa (for the composite containing 40 wt.% of the filler).

5.
Polymers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236119

RESUMO

To reduce the use of carbon components sourced from fossil fuels, hemp fibers were pyrolyzed and utilized as filler to prepare EVA-based composites for automotive applications. The mechanical, tribological, electrical (DC and AC) and thermal properties of EVA/fiber biochar (HFB) composites containing different amounts of fibers (ranging from 5 to 40 wt.%) have been thoroughly studied. The morphological analysis highlighted an uneven dispersion of the filler within the polymer matrix, with poor interfacial adhesion. The presence of biochar fibers did not affect the thermal behavior of EVA (no significant changes of Tm, Tc and Tg were observed), notwithstanding a slight increase in the crystallinity degree, especially for EVA/HFB 90/10 and 80/20. Conversely, biochar fibers enhanced the thermo-oxidative stability of the composites, which increased with increasing the biochar content. EVA/HFB composites showed higher stiffness and lower ductility than neat EVA. In addition, high concentrations of fiber biochar allowed achieving higher thermal conductivity and microwave electrical conductivity. In particular, EVA/HFB 60/40 showed a thermal conductivity higher than that of neat EVA (respectively, 0.40 vs. 0.33 W·m-1 ·K-1); the same composite exhibited an up to twenty-fold increased microwave conductivity. Finally, the combination of stiffness, enhanced thermal conductivity and intrinsic lubricating features of the filler resulted in excellent wear resistance and friction reduction in comparison with unfilled EVA.

6.
Polymers (Basel) ; 13(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34833321

RESUMO

The surface functionalisation of high-density polyethylene (HDPE) and HDPE/alumina-toughened zirconia (ATZ) surfaces with chitosan via electron-beam (EB) irradiation technique was exploited for preparing materials suitable for biomedical purposes. ATR-FTIR analysis and wettability measurements were employed for monitoring the surface changes after both irradiation and chitosan grafting reaction. Interestingly, the presence of ATZ loadings beyond 2 wt% influenced both the EB irradiation process and the chitosan functionalisation reaction, decreasing the oxidation of the surface and the chitosan grafting. The EB irradiation induced an increase in Young's modulus and a decrease in the elongation at the break of all analysed systems, whereas the tensile strength was not affected in a relevant way. Biological assays indicated that electrostatic interactions between the negative charges of the surface of cell membranes and the -NH3+ sites on chitosan chains promoted cell adhesion, while some oxidised species produced during the irradiation process are thought to cause a detrimental effect on the cell viability.

7.
Int J Oral Maxillofac Implants ; 33(6): 1247-1254, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30427955

RESUMO

PURPOSE: The aim of this vitro study was to reproduce and evaluate the response of bone and bacteria to traditional and innovative implant surfaces with difference wettability. MATERIALS AND METHODS: Two hundred fifty-two samples made of grade 4 titanium with different coating (machined [MAC]; double-etched, Ti-AE; zirconium nitride [Ti-ZrN]) were used for this in vitro study. Disks were divided into test (bioactivated using plasma of argon) and control group (untreated). To assess the surface morphology of the specimens, representative images were acquired via scanning electron microscopy (SEM). Murine preosteoblasts (MC3T3-E1) were used to study the biologic response in vitro, while the quantification of protein adsorption was achieved through the incubation of the titanium samples in a 2% solution of fetal bovine serum (FBS) in phosphate-buffered saline (PBS). The sterilized titanium disks were then colonized by bacterial species from a single sputum sample obtained from a healthy volunteer. For every analysis, 24 disks were used (12 for each group). RESULTS: SEM and topographic analyses demonstrated a Sa value of 0.33 (Ti-ZrN), 0.34 (MAC), and 0.62 (Ti-AE). Compared with the control groups, plasma treatment significantly increased the protein adsorption level on all the different titanium surfaces (5.88 ± 0.21 vs 7.85 ± 0.21, 7.13 ± 0.14 vs 9.74 ± 0.65, 4.41 ± 0.62 vs 6.13 ± 0.52, respectively, for MAC, Ti-treated, and Ti-ZrN). Similar behavior was described for cell adhesion (27.67 ± 2.03 vs 58.00 ± 20.13, 116.67 ± 12.02 vs 159.33 ± 8.09, 52.00 ± 4.73 vs 78.33 ± 4.67, respectively, for MAC, Ti-treated, and Ti-ZrN). Plasma treatment significantly augmented the number of CFU only in MAC and ZrN samples. CONCLUSION: With the limitations of this in vitro study, the following conclusions could be drawn: (1) rough implant surfaces present a higher adhesion and proliferation of preosteoblastic cells and bacterial biofilm; (2) rough implant surfaces benefited the most by the plasma of argon treatment.


Assuntos
Aderência Bacteriana/fisiologia , Biofilmes , Adesão Celular/fisiologia , Proliferação de Células/fisiologia , Implantes Dentários/microbiologia , Osteoblastos/citologia , Zircônio/química , Animais , Contagem de Colônia Microbiana , Humanos , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Molhabilidade
8.
Mater Sci Eng C Mater Biol Appl ; 65: 287-94, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27157754

RESUMO

In order to confer adhesive properties to commercial polypropylene (PP) meshes, a surface plasma-induced deposition of poly-(acrylic acid) (PPAA) is performed. Once biomaterials were functionalized, different post-deposition treatments (i.e. water washing and/or thermal treatments) were investigated with the aim of monitoring the coating degradation (and therefore the loss of adhesion) after 3months of aging in both humid/oxidant (air) and inert (nitrogen) atmospheres. A wide physicochemical characterization was carried out in order to evaluate the functionalization effectiveness and the adhesive coating homogeneity by means of static water drop shape analysis and several spectroscopies (namely, FTIR, UV-Visible and X-ray Photoemission Spectroscopy). The modification of the adhesion properties after post-deposition treatments as well as aging under different storage atmospheres were investigated by means of Atomic Force Microscopy (AFM) used in Force/Distance (F/D) mode. This technique confirms itself as a powerful tool for unveiling the surface adhesion capacity as well as the homogeneity of the functional coatings along the fibers. Results obtained evidenced that post-deposition treatments are mandatory in order to remove all oligomers produced during the plasma-treatment, whereas aging tests evidenced that these devices can be simply stored in presence of air for at least three months without a meaningful degradation of the original properties.


Assuntos
Acrilatos/química , Adesivos/química , Gases em Plasma/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Polimerização , Polipropilenos/química , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Biomed Res Int ; 2015: 157360, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25945324

RESUMO

Ceramic materials are widely used for biomedical applications because of their remarkable biological and mechanical properties. Composites made of alumina and zirconia are particularly interesting owing to their higher toughness with respect to the monolithic materials. On this basis, the present study is focused on the in vivo behavior of alumina toughened zirconia (ATZ) dental implants treated with a hydrothermal process. A minipig model was implemented to assess the bone healing through histology and mRNA expression at different time points (8, 14, 28, and 56 days). The novel ATZ implant was compared to a titanium clinical standard. The implants were analyzed in terms of microstructure and surface roughness before in vivo tests. The most interesting result deals with a statistically significant higher digital histology index for ATZ implants with respect to titanium standard at 56 days, which is an unprecedented finding, to the authors' knowledge. Even if further investigations are needed before proposing the clinical use in humans, the tested material proved to be a promising candidate among the possible ceramic dental implants.


Assuntos
Óxido de Alumínio/farmacologia , Implantes Dentários , Teste de Materiais/métodos , Zircônio/farmacologia , Animais , Biomarcadores/metabolismo , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Propriedades de Superfície , Suínos , Porco Miniatura
10.
J Mater Chem B ; 2(32): 5287-5294, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32261670

RESUMO

Polypropylene nets are widely used as hernioplasty prostheses. The reproduction of bacteria within the net fibers intersections can occur after the application of the prosthesis causing infections. For this reason, bacteria have to be removed in the very early stage of surgical implantation. Activation of the prosthesis surface was done by an innovative oxidizing plasma treatment (APP-DBD) working under atmospheric conditions in order to favor the deposition of an antibacterial coating of chitosan (biocompatible carbohydrate) and ciprofloxacin (broad spectrum antibiotic). Two different coating mixtures were realised and the antibacterial properties of such functionalised nets were investigated, together with their effectiveness. Physico-chemical characterisations of meshes were carried out before and after functionalisation by SEM-EDS and infrared spectroscopy. The release of both chitosan and ciprofloxacin, under controlled experimental conditions, was followed respectively by colorimetric determination (using UV-Visible spectroscopy) and chromatographic analysis (using HPLC). In vitro tests allow verifying antimicrobial activity (inoculation of specimens in a Staphylococcus aureus suspension).

11.
Langmuir ; 26(4): 2521-7, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-19877699

RESUMO

A study was carried out on the consequences of the -OH(surf)/F(-) exchange occurring at the surface of TiO(2) P25 when suspended in HF/F(-) solutions. The maximum extent of fluorination was reached at pH 3.0, resulting in the fixation on the surface of ca. 2.5 F(-)/nm(2). The surface features of fluorinated samples under two selected conditions were investigated by IR spectroscopy, in comparison with pristine TiO(2). The collected data suggested that bridged -OH(surf), likely located on regular facets, was more resistant to exchange with F(-). Combined high resolution transmission electron microscopy (HRTEM), inductively coupled plasma mass spectrometry (ICP-MS) and IR measurements indicated that the fluorination performed in the adopted condition did not induce any etching of TiO(2) particles, and the -OH(surf)/F(-) exchange appeared reversible by treatment in concentrated basic solutions. Furthermore, fluorination resulted in an increase of the Lewis acid strength of surface Ti(4+) sites, which, as a consequence, retained adsorbed water molecules even after outgassing at 423 K. Such an effect involved the overwhelming majority of cations exposed on regular facets.

12.
J Mater Sci Mater Med ; 19(8): 2889-901, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18415002

RESUMO

In Part I, the processing, microstructure and mechanical properties of three silicon nitride-based ceramics were examined and their non-toxicity was demonstrated. In this Part II, some features critical to biomedical applications were investigated: (i) the wetting behaviour against aqueous media, including physiological solutions; (ii) the chemical stability in water and in physiological solutions; and (iii) the wear resistance, measured under experimental procedures that simulate the conditions typical of the hip joint prosthesis. The results confirmed that silicon nitride may serve as a biomaterial for bone substitution in load bearing prosthesis.


Assuntos
Cerâmica , Ortopedia , Próteses e Implantes , Compostos de Silício/química , Teste de Materiais , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...